神奈川大学23号館(免震棟)の地震時挙動 その2.免震層の地震時復元力特性 _{免震棟}地震観測 鉛入り積層ゴム

復元力特性 等価せん断剛性 等価減衰定数1.はじめに

神奈川大学に新築された 23 号館(免震棟)において 2000 年 12 月に振動性状の基本的デ - タの収集を目的に常時微動 測定、起振機による定常加振・自由振動実験を実施し、そ の結果は既に構造設計概要を含めて報告されている^{1)~3)}。 これより固有振動数、減衰定数に強い振幅依存性が顕著に 見られた。この振幅依存性は免震層に起因するものと考え、 免震層の復元力特性を明らかとした。しかしながら振動実 験で得られた免震層の最大相対変位は設計で鉛ダンパ - が 降伏する変位の約 1/400 であり設計との連続性を見るには 限界がある。当該建物は 2001 年 4 月より地震観測を実施し ており⁴⁾本報告では、これまで観測された地震観測記録に 基づき地震時の免震層の復元力特性を検討した。

2. 建物および地震観測

23号館は、地下2階、地上8階、搭屋2階のRC造でB2 階とB1階の間に積層ゴムと鋼棒・鉛ダンパーのみで2つの 階がつながる免震層を有する中間免震構造となっている。 設置した地震計はサ-ボ型加速度計(一部速度計)で 8,6,3,B1,B2階の5箇所に各設置階ともに、ほぼ同位置に設 置してある。本報告ではこれまでに観測された地震のうち 比較的加速度の大きく、かつ全観測点において記録の得ら れた表1に示す4地震を対象とした。

3.<u>免震層の復元力特性</u>

3.1 建物の1次固有振動数による評価

振動実験結果より明らかなように加振力レベルが大きく なるに従い1次固有振動数が低下する²⁾。実験時の振幅レ ベルでは建物の剛性は線形であり、この要因として免震層 の剛性低下で良く説明できる³⁾。そこで地震時の免震層を 含めた1次固有振動数を得るため、4 地震、各方向の 8F/B2F の伝達関数を求め図1に重書きで示した。NS、EW 方向とも 加速度が大きくなるとピ-ク振動数が低下する傾向が見ら れる。8,B1,B2 階の最大加速度、1 次ピ - ク振動数、免震層 の最大相対変位、等価せん断剛性を表2に示した。表中に 示すように振動実験における1次ピ-ク振動数と等価せん 断剛性が分かっており、振動数の比の2乗より等価せん断 剛性を算定した。免震層の相対変位は免震層の上下階であ る B1,B2 階の加速度記録を2階積分して変位を求めその差 より算定した(図4に一部掲載)。図2に免震層の相対変位 と等価せん断剛性の関係を示した。図中に起振機実験時に 実施した自由振動実験のヒステリシスから得られた値と図 3に示す設計で想定した解析モデルから得られる値を比較 して示した。対象地震のうち最も大きい加速度を示した No.4 地震でもQ1 の振幅レベルの約 1/10 であるが実験値、 設計値との連続性を良く示していると言える。

正会員	内山	正次*1	正会員	安達	直人*1
同	引田	智樹*1	同	大熊	武司*2

表1 検討対象地震

No.	観測日時	震源	緯度·経度	М
1	2001.06.25 01:27	神奈川県東部	N35.6 W129.5	3.9
2	2001.07.20 06:02	茨城県南部	N36.2 W139.8	5.1
3	2001.07.26 03:33	茨城県南部	N36.1 W139.8	4.5
4	2001.09.18 04:24	東京湾	N35.4 W139.8	4.4

図1 地震観測記録による伝達関数

表2 最大加速度と1次固有振動数・等価せん断剛性

		最大加速度(cm/s ²)		1次ビーク	相対変位	等価せん断剛性	
地震No.	方向	8F	B1F	B2F	f ₁ (Hz)	(µm)	(×10 ⁶ kN/m)
No.1	NS	1.50	1.87	1.80	1.54	27.8	6.5
	EW	1.82	1.97	2.97	1.71	72.2	5.6
No.2	NS	2.54	2.38	3.22	1.17	205.9	3.8
	EW	2.16	2.13	2.32	1.03	265.0	2.0
No.3	NS	1.39	1.37	1.31	1.61	35.1	7.1
	EW	1.05	1.10	1.49	1.61	38.9	4.9
No.4	NS	6.81	6.37	12.47	0.90	582.3	2.2
	EW	7.47	9.66	9.15	0.90	641.8	1.6
振動実験	NS	(レベル3の1次ビーク)		1.54	22.6	6.5	
	EW	(レベル3の1次ビーク)		1.38	29.6	3.6	

Behavior of The 23rd Building (base-isolated type) of Kanagawa University during Earthquake: Part 2. Restoring Force Characteristics of the Base-isolated Layer during Earthquake UCHIYAMA Shoji, ADACHI Naohito, HIKITA Tomoki, OHKUMA Takeshi

3.2 免震層のヒステリシスによる評価

地震時の免震層の等価せん断剛性と減衰定数は慣性力と 相対変位が分かればヒステリシスより評価できる。地震観 測は免震層より上部に4箇所の加速度計が設置され地震時 の慣性力を推定することが可能である。

図4に加速度が小さい No.1 と最大加速度を示した No.4 地震の場合の各観測点に代表される慣性力とその総和Pな らびに相対変位 のタイムヒストリ - を示した。このうち 相対変位が大きく、1周期が把握される部分のヒステリシ スを図5に示した。No.1 は等価せん断剛性が大きく No.4 は小さくなっている。図中破線で示した部分は減衰定数を 推定するために近似したル - プである。図6a)に相対変位 と等価せん断剛性の関係を示し、図6b)に相対変位と等価 減衰定数を示した。図中には自由振動実験から得られた値 と解析モデルから得られる値を比較して示した。等価せん 断剛性については伝達関数より評価した図2と良く対応し ている。減衰定数は設計では鉛ダンパ - の降伏するQ1 レ ベル以前は線形であるが振動実験や中小地震レベルにおい てもかなり大きな減衰定数を有する。微小振幅では鉛ダン パ-の寄与が大きく、剛性・減衰の評価には留意を要する。

文献 ⁵⁾では鉛入り積層ゴムの復元力モデルに言及してい るがその時の加力実験デ-タを用いて同様な整理を試みた。 図7に実験結果と設計モデル、図8に等価せん断剛性と減 衰定数を示す。等価せん断剛性は加力実験と設計値は良く 対応している。減衰定数はQ1 レベル以前で大きな値を示 し、かつ極大値を有する傾向は図6b)と同様である。大地 震を想定したレベルでは設計モデルの妥当性を示唆してい ると言えよう。

4.まとめ

地震の免震層の復元力特性を評価し、以下の知見を得た。 (a) 免震層の等価せん断剛性を建物の1次固有振動数の変 化が免震層に起因すると仮定した場合と地震時の免震層の ヒステリシスより評価したが、両者の結果はよく整合して おり、かつ振動実験と設計モデルとの連続性が見られた。 (b)免震層の等価減衰定数は設計時の第1勾配降伏点Q1以 前にもかなり大きな値を示し、中小地震の解析や風応答解 析における減衰定数評価には有意な結果が得られた。

謝辞 本報告をまとめるにあたり、鹿島技研・飯塚真巨氏 から貴重な鉛入り積層ゴム加力実験デ-タを提供して頂き、 またヒステリシスの剛性、減衰評価では同・清田芳治氏に 協力頂きましたことを記して謝意を表します。 参考文献 1)吉田,大熊,常木:神奈川大学 23 号館(免震棟)および 新1号館の振動実験(その1)23号館の構造設計概要、日本建築学 会大会、2001.9、2)引田,安達,内山,大熊:同(その2)23号館の振 動実験結果、日本建築学会大会、2001.9、3)安達,引田,内山,大熊: 同(その3)23号館免震層の復元力特性、日本建築学会大会、2001.9、 4) 栗山,山本, 荏本: RC 造免震構造物の地震観測結果に基づく動的 挙動の検討、第一回日本地震工学研究発表・討論会梗概集、2001.11、 5) 竹中, 山田, 吉川: 免震用積層ゴム支承の曲線型履歴復元カモデ ル:「修正 HD モデル」、日本建築学会技術報告集、2001.12

- *1 鹿島技術研究所
- *2 神奈川大学教授

Kajima Technical Research Institute *1

*2 Prof. of Kanagawa University

2

0.1

0.01

0

-60