CFT 柱-フラットプレート接合部の耐荷性能に関する実験的研究 - その7 パンチングシアー耐力の検討 -

 正会員
 〇山口
 卓巳^{*1}

 同
 島崎
 和司^{*2}

 同
 五十嵐
 泉^{*3}

接合部 CFT 柱 フラットプレート押し抜き耐力

1 はじめに

CFT 柱--フラットプレート接合部は接合部周辺で脆性的 な破壊が懸念される。前報^{1),2)}では、接合部分を取り出し た要素試験体に異なる押し抜き加力方法の試験を行い、 本接合ディテールでは脆性的な破壊、または急激な耐力 低下は引き起こさない事を示した。本報その7では、前 報^{1),2)}で報告されている崩壊機構を踏まえ、曲げ耐力を増 加させた試験体で実験を行うことにより接合部での耐荷 機構を検討し、本接合ディテールにおけるパンチングシ アー耐力について評価することを目的とする。

2 実験概要

試験体は7体で、寸法は660×660×100mmとし、せん断 スパン比は1.3とした。試験体パラメータは、スラブ筋の 鉄筋(SD295A、USD785)、接合プレートの形状と有無、 スタッドの有無、CFT 柱と RC 柱の違いとした。Ps21 は 曲げ先行型試験体とし、その他はせん断先行型試験体と した。試験体一覧を表1、代表的な試験体図面を図1、使 用材料の機械的性質を表2 に示す。スラブの配筋、加力 方法(図2)、計測項目は前報^{1,2}と同じとした。

3.1 ひび割れ状況

写真1にスラブ上面のひび割れ状況を示す。スラブ筋

に普通鉄筋を用いた Ps21 では柱部から四方に接合されて いる埋込み H 型鋼と平行方向にクラックが入り、スラブ 下面では、変形が進むにつれて H 型鋼真下部分が圧壊し た。高強度鉄筋を用いた Ps22 では、柱部を中心とした放 射状クラックが入り、接合プレートの繋がっていない Ps24 では Ps22 と同様のひび割れ状況であるが、H 型鋼に 平行なクラックの数が少なかった。また、RC 柱である Ps27 では柱部を中心として円状にクラックが入り、その 後に荷重が低下した。その他の試験体のひび割れ状況は Ps22 と同様であった。写真 2 に試験後に切断して観察し たスラブ内部のひび割れ状況を示す。切断面は接合部周 辺である A-A'断面、反力付近周辺である B-B'断面とし、 図 1 に示した赤点線位置で切断した。A-A'断面において、 Ps26,27 ではせん断クラックが顕著であるのに対して、 Ps24,25 では顕著に現れていない。Ps25 の B-B'断面ではせ ん断クラックが顕著である。

3.2 実験結果及び考察

図 3 に接合部周辺における最大耐力とスタッド、接合 プレートおよびコンクリートの負担せん断力を示す。ス タッド、接合プレートの負担せん断力は、それぞれの歪 履歴から推定し、残りをコンクリートの負担せん断力と した。スラブ補強筋が普通鉄筋である Ps21 と高強度鉄筋

An Experimental Study of CFT Column-Flat Plate Joints. —Part7 Evaluation of Punching Shear StrengthYAMAGUCHI Takumi, SHIMAZAKI Kazushi, and IGARASHI Izumi

図5 スラブ筋歪分布

である Ps22 では最大耐力に大きな差が見られた。接合プ レート形状を変更させた Ps22,25,26 においては最大耐力の 差は小さいが、接合プレート負担せん断力に大きな差が 見られる。RC 柱である Ps27 と比較できる Ps24 (CFT 柱)は、最大耐力およびコンクリート負担せん断力が同 程度の値となり、接合プレート有無による Ps23,24 でも最 大耐力は同程度の値となっている。図 5 に図 4 に示した A,B,B',C,D 位置での最大耐力時における鉄筋歪度分布を 示す。Ps21 は B,B'位置で鉄筋が降伏しており、仮定した 降伏位置で曲げ破壊し最大耐力が決まっている。高強度 鉄筋を使用している試験体では仮定降伏位置での鉄筋は 降伏歪に達していない。図6に図4に示した X~Z 位置で のスタッドの歪度分布を示す。Ps21,22 は、ほぼ同程度の 歪であり降伏歪までは達していないが、Ps26 でのY位置 でのスタッド筋は降伏歪に達している。表 3 に実験値と 計算値を示す。曲げ耐力は図 4 に示した仮定降伏位置で のスラブ筋曲げ耐力であり、Ps21 においてはほぼ同値で ある。ACI 規準式³⁾は、接合部周辺におけるスタッド、 接合プレート、コンクリートのせん断力の総和であり、 Ps24,27 では安全側の値となるが、その他の試験体では相

*1	神奈川大学	工学研究科 建築学専攻	
*2	神奈川大学	工学部 建築学科 教授 博士 (]	〔学)
*3	神奈川大学	工学部 建築学科 主任技術員	

違がある。これより、本接合ディテールでは3 つの崩壊 機構を推定できる。崩壊機構Iは仮定降伏位置でのスラ ブ補強筋降伏による曲げ破壊、崩壊機構Ⅱは反力ブロッ ク付近での局部破壊、崩壊機構Ⅲは仮想破壊断面内での せん断破壊である。コンクリート標準示方書⁴⁾によると スラブ押抜きせん断終局耐力は、仮想破壊面面積×公称 せん断強度、その他に形状寸法、強度特性、補強筋、寸 法効果等の影響因子を考慮することで表すことができる とされている。これらを踏まえ、また崩壊機構Ⅱ、Ⅲを 考慮した計算値を表 3 中の A 式としている。せん断先行 型試験体において比較的良い値を示している。

4 まとめ

本報はせん断先行型の要素試験体であったが本接合デ ィテールでは脆性的な破壊は起きなかった。パンチング シアー耐力については、仮想破壊断面を適切に評価し、 影響因子を考慮することで比較的良好に推定できると考 えられる。また、地震時に加わる水平力を考慮した仮想 破壊断面を適切に評価することが必要とされる。 【参考文献】

 (1) 在擬はか、CFT 柱―フラットブレート接合部の耐荷性能に関する実験的研究、その2、AIJ 大会、2004 年
 2) 山口ほか、CFT 柱―フラットプレート接合部の耐荷性能に関する実験的研究、その4、AIJ 大会、2005 年 3) ACI-ASCE Committee 421 : Shear Reinforcement for slabs ACI 421 1R-99 4) 土木学会:コンクリート標準示方書[平成8年制定]設計編

Kanagawa University Professor, Kanagawa University, Dr. Eng. Chief Technician, Kanagawa University