デボンドX型配筋を用いた損傷低減型耐震壁の実験的研究

AN EXPERIMENTAL STUDY ON DAMAGE-FREE REINFORCED CONCRETE SHEAR WALLS WITH DE-BONDED DIAGONAL REINFORCEMENTS

平田寬治*, 島崎和司** Noriharu HIRATA and Kazushi SHIMAZAKI

In a reinforced concrete building with core shear walls, the core resists most of the seismic force, so that the damages would be concentrated at the wall base due to the large shear force and bending moment. Diagonal cracks caused by this shear force reduce the shear stiffness of the core wall substantially. As shear stiffness cannot be restored by repair works, it is desirable to minimize such diagonal cracks. This paper examines the behavior of shear walls with de-bonded diagonal reinforcements to reduce the damage and so ensure good repairability.

Test results showed that the number of cracks differed greatly even for the same load-carrying capacity. Repair work was easier than with the common parallel reinforced wall. In conclusion, the newly developed earthquake resisting wall reduces damage, shows good performance, and can be reused even after a severe earthquake.

Keywords: Reinforced concrete structure, Damage control, shear wall, bond, Diagonal reinforcement 鉄筋コンクリート構造,損傷制御,耐震壁,付着,X型配筋

1. はじめに

建物の主な設計方針は、建物の崩壊から人命を保護することが第一条 件である。しかし、近年要求性能の多様化により財産価値の保護として、 大地震後にコストを掛けずに継続して使用できる建物が求められている。 最近の構造設計では、損傷制御設計が行われるようになり、鉄筋コンクリ ートにおいては、部材の性能を高め、損傷を低減させることが目標となる。 また、部材に損傷が発生した場合でも、損傷を特定の部材や位置に集中 させることで補修が容易に行うことができ、建物の継続使用を可能にする ことができる。

図 1 に示すようなコア耐震壁を有する構造システムは、地震力の大半 をコア耐震壁で負担し、境界梁で地震エネルギーを吸収することで、その

^{*} 神奈川大学大学院工学研究科建築学専攻

** 神奈川大学工学部建築学科 教授·博士(工学)

他の部材の損傷は低減される。

境界梁については、これまでにX型配筋梁について検討を行い、デボ ンドX型配筋を用いることで一般の定着のあるX型配筋梁に比べて、大 幅にせん断クラックを低減でき、高いエネルギー吸収能力があることを示 した^{1),2)}。

一方、コア耐震壁下層部では、大きなせん断力、曲げモーメントが作 用する。そのため、壁部の損傷が大きくなることが考えられる。曲げクラッ クは、地震後に建物の自重により閉じるため、ある程度のクラックは許容さ れるが曲げモーメントが大きくなり残留クラック幅が拡大すると補修が必要 となる。また、せん断クラックは、補修によるせん断剛性の回復が期待でき ないため、せん断クラックを低減させることが望ましい。

これまで耐震壁の性能向上を目指して、45 度配筋や PCa とプレストレ ストとの組み合わせ、壁主筋の付着除去などが提案されている^{3)~8)}。しか し、これらの多くは、靱性能の向上を目的としているため、損傷低減を目 的としたものは少ない。

本論では、損傷低減化とプレキャスト化を目標に、

- i. せん断クラック減少による剛性低下防止、
- ii.曲げクラックの低減、
- iii. 施工性、汎用性の向上、

の 3 つの要求レベルを想定し、境界梁で損傷低減効果の認められたデ ボンド X 型配筋を用いた損傷低減型耐震壁の可能性を検討するために 行った実験的研究について報告する。

Graduate Student, Kanagawa University Professor, Kanagawa University, Dr. Eng.

374

8-D16

388

2-D10@70 353

4-D16

371

SD298

2-D6@50

383

体である。WX1のX型主筋は、WP1の端部縦筋 6-D13をX型とし、デ ボンド加工したものある。鉄筋のデボンド加工は、デボンドテープ(ブチル 系ゴム:サンタックシーラー)とガムテープにより行った。壁端部には、拘束 筋の配筋のため D6 の縦筋を配置した。

WSX1は、曲げクラックの低減と集中を期待してWX1を各層位置で分 割した試験体である。WSX2は、WSX1にパネルを水平に3分割するた め、厚さ0.6mmのクラック誘発プレートを設置した。WSX3は、プレキャス ト化を想定し、WSX1 のX型主筋を各層に分割した試験体である。各試 験体の端部縦筋をデボンドし、写真 1a)に示すように 40mm×40mm× 6mm のプレートとナットの定着板によりパネル端部で定着をとった。パネ ル内の鉄筋は、閉鎖型としパネル内で定着されている。パネル分割部は、 グラウト材を充填した。

WTX1は、WX1にL字型耐震壁のフランジ部分を集約したT字型直 交壁をつけたものである。WTX2 は、WTX1 のフランジの無い方(以下、 自由端と記す)の最外端鉄筋を2-D6から2-D16にし、写真1b)に示すよ

2. 実験概要

直交壁

梁

2.1 試験体概要

クラック誘発プレート

v(N/mm

縦筋

"(N/mm²

横筋

 $v(N/mm^2)$

梁主筋

y(N/mm²

あばら筋

.. (N/mm²)

368

試験体は全部で8体であり、試験体概要を図2、鉄筋形状を図3、試 験体一覧を表1に示す。試験体は、図1に示したプロトタイプ建物の予備 解析より、コア壁脚部のモーメント反曲点位置を求め、下部 2.5 層分を取 り出した。約1/5スケールで断面120mm×900mm、高さ1800mmとし、

ステンレス板

374

うに下部スタブ内 160mm でカットし、スタブ内はデボンドして定着を切っ た。これは、直交壁を持つことにより、自由端脚部の圧縮力が厳しくなる ため、端部圧縮耐力を向上させ、圧壊を防止し、同時にスタブ内のデボ ンドにより引張力を負担しないことでクラックの軽減を期待した。

WBX1 は、境界梁接合部での損傷評価のために WSX1 に境界梁を 想定した梁を取り付けたものである。境界梁接合部の曲げモーメントによ る曲げ戻しを受け、せん断スパン比が小さくなるため、想定しているプロト タイプ建物の下部に比較してパネルのせん断力の負担が大きくなる。ま た、壁の曲げによる圧縮力と梁からの圧縮力により、接合部で厳しい応力 状態になると想定される。

2.2 想定耐荷機構

損傷を低減するためのデボンド X 型配筋壁の基本コンセプトを図 4 に 示す。一般的な平行配筋壁は、図 4a)に示すように左側から水平力が作 用した時、左側面に引張力が生じて、多くの曲げクラックが発生する。中 央部には、コンクリートの圧縮ストラットの方向に斜めクラックが生じる。

ブレースとしての役割を持たせたデボンド X 型配筋を有する壁では、 図 4b)に示すように X 型主筋がトラスを形成し、引張力は主として X 型主 筋で抵抗し、壁左側面は、拘束筋配筋用の鉄筋のみでほとんど引張力 が生じない。X 型主筋をデボンドすることにより、中央部で鉄筋の引張力 がコンクリートに伝わってクラックを誘発することがない。そのため、クラック が脚部のみに集中して発生し、せん断クラックが減少することを期待した。 また、テンションシティフニングがないので X 型主筋のひずみのばらつき をより均一にすることができる 9.10。

図4c)に示す分割型X型配筋壁では、図4b)に加え、端部縦筋とコンク リートの圧縮力により水平力に抵抗する。端部縦筋もデボンドすることで 壁全体に発生する曲げクラックを減少し、壁脚部に曲げクラックを集中す ることを期待した。端部縦筋の分割部に写真1a)で示した定着板を設置 することで曲げ変形を先行させ、分割部に変形を集中させることで斜めひ び割れの発生を防止及び遅延させることを期待した^{10,11}。また、分割部 の定着板により、図4c)に示したようなパネルごとにトラス機構を形成する と想定した。トラス機構の接合部のせん断力は、端部縦筋、接合部の摩 擦などによる接合部せん断抵抗機構により伝達される。

2.3 加力方法

加力は、図5に示す加力装置を用いた。鉛直アクチュエーター2を荷重 制御として、試験体図心位置に一定軸力($\sigma_0=0.1Fc$)を壁全断面積に 応じて与え、耐震壁頂部に水平アクチュエーターで正負交番繰り返し載

荷する。鉛直アクチュエーター1は、荷重制御で加力フレームの重量を保持するために設置している。水平力は変位制御として加力し、加力サイクルを耐震壁頂部部材角で R=1/700 を1回、R=1/400を3回、R=1/200を3回、R=1/100を6回、R=1/67を3回、R=1/40を1回それぞれ繰り返し加力とし、最終的に R=1/33 まで一方向加力とした。

3. 実験結果

3.1 損傷状況

試験体8体のR=1/200とR=1/100での損傷状況を図6に示す。全ての試験体でR=1/700で、曲げクラックが発生した。

WP1 は、R=1/400 で軽微な曲げせん断クラックが生じ、R=1/200 まで に曲げせん断クラックが進展した。R=1/100 では、多くのせん断クラックが 生じた。このときのピーク時のクラック幅は 0.2mm となった。R=1/100 で 圧縮側被りコンクリートの剥離がみられ、R=1/33 で脚部圧壊が生じたが、 軸力は保持していた。R=1/200 のせん断クラックの状況をみると、補修に はかなりの労力を要し、またせん断剛性の回復は難しいと思われる

WX1も、R=1/400 で軽微な曲げせん断クラックが生じ、R=1/200 で曲 げせん断クラックが生じたが軽微なものにとどまった。R=1/100 では、曲 げクラックが中央部に進展し中央部のごく狭い領域にせん断クラックが生 じた。このときのピーク時のクラック幅は 0.05mm となった。その後の挙動 は、WP1 と同様であった。R=1/200 の変形程度では、曲げクラックは自 重により閉じるため、そのまま再利用が可能と思われる。R=1/100 程度の

変形になると、補修にかなりの労力が必要となると思われる。

WSX1、WSX2 は、R=1/200 で軽微なせん断クラックが生じたが、ほ とんど進展せず、R=1/100 まで大きなせん断クラックは見られなかった。 WSX1 とWSX2 に大きな違いは見られなかった。WSX3 は R=1/400 で 軽微なせん断クラックが生じたが、あまり進展せず、その後はWSX1、 WSX2 と同様であった。曲げクラックは、脚部と接合部に集中し、 R=1/100 載荷後の残留曲げクラック幅は、WSX1、WSX2 ともに脚部で 0.4mm 程度、WSX3 は、0.5mm 程度となった。R=1/200 の変形程度で は、そのまま再利用が可能と思われる。R=1/100 程度の変形になると、脚 部の曲げクラックの残留幅が大きくなるため、再使用するには、補修が必 要と考えられるが、労力はそれほど大きくないと思われる。

WTX1、WTX2 は R=1/400 の直交壁圧縮側で曲げせん断クラックが 確認できたが、引張側となる場合せん断クラックのみ生じた。その後各ク ラックが進展し、脚部の被りコンクリートの剥離は WTX1 が R=1/200 で、 WTX2 は R=1/100 で確認できた。WTX1 は R=1/100 で端部の圧壊が 始まり、載荷の繰り返しにより端部 D6 鉄筋が座屈、破断し、壁脚部中央 部まで圧壊が進んだ。WTX2 は、R=1/67 で中央部に圧壊が生じた。 WTX1、WTX2 ともに、R=1/200 の変形でも補修の労力は多大なものに なると考えられる。WTX1 は、R=1/100 で脚部圧壊が始まっており、この 変形での補修は困難と考えられるが、WTX2 は被りコンクリートの剥離に とどまっており、自由端拘束領域の補強の効果が見られる。

WBX1 は、想定したプロトタイプ建物のせん断スパン比に比べ、せん 断に対して非常に厳しい状況になっており、R=1/200 変形時でも 1 層目、 2 層目でせん断クラックの減少は見られなかった。R=1/100 で分割部と梁 の接合部に圧壊が生じ、サイクルを増すことで端部縦筋が座屈を起こし たため、この変形レベルでは補修は困難となると考えられる。

3.2 水平力一壁頂部変位関係

図 7 に水平カー壁頂部変位関係を示す。図中の水平力は、各アクチ ユエーターの傾きによる P-δ 効果を補正した値となっている。

WP1はR=1/100で最大耐力となり、その後、徐々に耐力は低下した。 WX1、WSX1、WSX2 は、R=1/67 まで最大耐力を保持し、大変形時で も耐力を保持した。WSX1、WSX2 は、最後まで軸力を保持していたこと

図7 水平力-壁頂部変位関係

から変形能力も十分であるといえる。WSX3は、R=1/100をピークに徐々 に低下した。

WTX1 は、R=1/100 で耐力の低下が見られ、自由端脚部が圧壊し、 繰り返しにより端部 D6 鉄筋の破断に至り、R=1/67 の第 1 サイクルで急 激な耐力低下が見られた。そのため、直交壁圧縮側加力を R=1/40 とし て実験を終了した。WTX2 は、R=1/100 で非拘束部の被りコンクリートの 剥離が始まり、圧壊の兆しが見られたじたものの耐力の低下は見られず、 R=1/67 で非拘束部の D13 鉄筋が座屈し始めたため、耐力が著しく低下 した。変位計の不備により、R=1/67 の第 1 サイクルの変位が目標値を超 過し、データの欠損があった。図中には、加力時のメモから推定した値で 補正した値が追記されている。

WBX1は、R=1/67で最大耐力となったが接合部の圧壊が進み、端部 縦筋が座屈したため、R=1/67以降で耐力の低下が見られる。

3.3 鉄筋ひずみ分布

図8、図9に代表的な試験体の端部縦筋とX型主筋のひずみ分布を示す。図中のひずみは、R=1/400、1/200、1/100での正加力処女載荷時ピークの両端のひずみ分布である。WTX1は、直交壁により加力方向で応力が大きく異なるため、正負加力時のひずみを示した。直交壁が引張となる場合が正加力時となり、引張と記載したグラフを指す。

WP1の端部縦筋は、圧縮側も降伏し、耐力に寄与している。端部縦筋 において WSX1 は、R=1/100 で 1 層の圧縮側縦筋も降伏しているが WSX2、WSX3 では、おおむね降伏ひずみ程度となっている。端部縦筋 をデボンドした試験体は、層毎にほぼ均一なひずみ分布となっていること からデボンドと定着板の効果が得られていることがわかる。 WBX1 では、引張側端部縦筋が境界梁の影響を受け、2 層目脚部で も降伏している。圧縮側では、WSX2、WSX3 と同様に端部縦筋は、降 伏ひずみ程度にとどまっている。

WX1、WSX1の引張側X型主筋は、R=1/100で降伏ひずみに達して いるが、WX1の圧縮側X型主筋は、降伏ひずみの1/4程度、WSX1で は1/2程度となっている。これは、コンクリートの圧縮ストラットが圧縮力を 負担していることと、曲げ変形成分が増加したことにより圧縮側X型鉄筋 が壁脚部を中心に回転するように変形することで降伏に必要なひずみに 達しにくいためと考えられる。ひずみの分布は、ほとんどの試験体のX型 主筋が両端部を除いて一様であり、デボンドの効果が確認できた。

WTX1 では、直交壁が引張となる場合、X 型主筋は引張圧縮とも同程 度のひずみであるが、最大耐力時(R=1/100)のひずみは、降伏ひずみ の 2/3 程度にとどまっている。これは、直交壁の鉄筋が引張に抵抗し、圧 縮側のコンクリートが先に耐力に達してしまうためと考えられる。圧縮とな る場合は、引張側の X 型主筋は降伏しているが圧縮側の X 型主筋のひ ずみは小さく、ほとんど耐力に寄与していない。これは、直交壁の圧縮時 には、コンクリート断面積が大きく、圧縮ひずみが小さくなるため、圧縮側 X 型主筋が効かないためと考えられる。

4. 実験結果の検討

4.1 最大耐力算定法

デボンド X 型配筋を有する試験体の最大耐力 Pu を(1)式に示すように 平行配筋の曲げ終局耐力 pPu と X 型主筋の降伏耐力の水平成分 xPy の総和として算定した場合、表 2 に示すように最大耐力は算定値に達し

表 2 最大耐力·算定值

試験体	WP1	WX1	WSX1	WSX2	WSX3	WBX1	WTX1		WTX2	
							圧縮	引張	圧縮	引張
最大耐力Pmax(kN)	293	293	290	288	213	494	378	419	359	478
算定值Pu(kN)	272	298	295	295	190	461	499	578	489	600
Pmax/Pu	1.08	0.98	0.98	0.98	1.12	1.07	0.76	0.72	0.73	0.80
補正算定值P'u(kN)	-	265	256	256	-	-	451	530	441	553
Pmax/P'u	-	1.11	1.13	1.13	_	_	0.84	0.79	0.81	0.86

ていない。

$Pu = pPu + xPy \quad (1)$

これは圧縮側デボンド X 型主筋がコンクリート圧壊時に降伏ひずみに達 していないためである。図9に示すように各サイクルで引張側X型主筋に 比べ、50%以下となっている。またX型主筋が降伏に達するR=1/100に おいても圧縮側X型主筋のひずみが引張側に比べ 50%程度となってい る。デボンドX型を用いた境界梁^{1,2)}の場合には、平行筋による曲げ耐力 と、X型筋をブレースと見なした時の耐力の和で全体の耐力を算定可能 であった。梁の場合軸力が作用していないので、コンクリートに作用する 圧縮力に比べ、コンクリートの圧縮強度に余裕があり、X型配筋の圧縮側 鉄筋が降伏しない分をコンクリートが圧縮ストラットとして負担できたため である。しかし、軸力が作用する場合には、コンクリートの圧縮強度に余 裕がなく、コンクリートの圧壊で耐力が決まるため、X型ブレースの圧縮側 は、引張側と釣り合うだけの耐力を負担できないと考えられる。そこで、圧 縮側を降伏耐力の 50%として算定した算定値と比較すると、立体耐震壁 を除き、実験値とよい対応を示している。

設計では、実際のひずみから算定することはできない。本論で用いた 試験体の範囲内では、X型配筋壁単体の場合の最大耐力の略算式を、 圧縮側デボンドX型主筋の降伏耐力に低減係数として 0.5 を乗じて、次 式で与える。

$Pu = pPu + txPy + n \times cxPy \quad (2)$

ここで txPy を引張側 X 型主筋の降伏耐力の水平成分、cxPy を圧縮側 X 型主筋降伏耐力の水平成分、n を低減係数 (n=0.5)とする。n は、X 型主 筋の配置や強度、コンクリートの圧縮強度、拘束効果の影響を受け、図 4 の耐荷機構から設計式を設定すべきだあるが、今回の実験の範囲では、 0.5とした。WSX3 は、X 型主筋の定着をパネル内で取ったため、最大耐 力を壁脚部の曲げ耐力のみとした。 立体耐震壁の WTX1、WTX2 では、直交壁が圧縮となる場合、コンク リート断面積が大きく、圧縮ひずみが小さくなるため、圧縮側 X 型主筋が 働かない。引張時には、X 型主筋が降伏する前に自由端側コンクリートが 先に耐力に達するため、X 型主筋が耐力に達しないない。立体耐震壁な ど直交壁が大きい場合、(2)式で略算的に耐力を算定することは難しいと いえる。

4.2 変形成分

試験体両端部の分割区間毎に計測した鉛直変位から、その区間の平 均曲率を求め、その積分から曲げ変形成分を算定した。全体変形から曲 げ変形の差を、せん断変形やスリップ変形となるその他の変形とした。鉛 直変位は、所定の一定軸力を負荷後を変形の初期値とした。図 10 に各 サイクルでの最初のピーク時の変形成分を示す。

平行配筋壁 WP1 は、曲げ変形以外のその他の変形成分の割合が 25%程度となっているのに対し、デボンド X 型配筋の WX1 では、15%程 度となり、最終状態以外では、変形の増大に伴い曲げ変形成分が増大し ている。各層を分割した WSX1、WSX2 では、曲げ変形成分が 90%以上 となっている。パネルを 3 分割した WSX2 においては、最終状態で曲げ 変形成分が 95%以上となり、せん断による損傷が低減されたことと合致し ている。層毎に X 型配筋した WSX3 は、曲げ変形成分が 90%と WSX1 と同程度の割合を示しているが WSX3 の接合部では、後述するように R=1/67 時に約 2mm のスリップが確認できたことから、その他の変形成 分の大半がスリップ変形で、せん断変形成分は少ないと考えられる。

直交壁を有する WTX1 は、直交壁が引張側となるときには、曲げ耐力 が大きくなるためせん断力が厳しくなり、せん断変形成分が増大している。 圧縮抵抗する鉄筋を増やした WTX2 では、WTX1 よりせん断変形成分 の割合が高いが、大変形時におけるせん断変形成分の増大は見られな い。WBX1 は、WX1 と比べると 10~15%程度せん断変形成分が高くな っている。

4.3 接合部スリップ性状

スリップ変形を計測した WSX3 と WBX1 の接合部のスリップ性状を図 11 に示す。スリップ変形は、接合部周辺の水平変位と鉛直変位から求めた。

図10の変形成分の割合と比較するとWSX3のスリップ量は、R=1/100 で1.2mm、R=1/67 で2mm 程度となっている。これは、全変形量の7% 程度である。変形が増大していくとともに図10のWSX3のその他の変形 割合とほぼ同じ値となり、大変形時にせん断変形が少なく、スリップ変形 が支配的であることがわかる。

WBX1 のスリップ量は、R=1/100 で 2.8mm、R=1/67 で 4.2mm 程度 となり、その他の変形割合の約 55%となった。その他の割合からスリップ 量を除いた値をせん断変形として考えると全変形量の 15%程度を占めて いることがわかる。

4.4 エネルギー吸収能力

図 12 に等価粘性減衰定数を示す。変形角 R=1/100 までは、平行配 筋壁と同等の値を示している。しかし、縦筋が降伏する R=1/100 以降は X 型配筋を有する試験体 WX1 において、X 型主筋が降伏しないため、 履歴形状が逆 S 字型を示し、WP1 よりエネルギー吸収能力が低い結果 となっている。WSX1、WSX2 は、逆 S 字型ではないものの WX1 とほぼ 等しい値を示した。WX1に比べ、大幅に損傷が低減されたがエネルギー 吸収能力の観点では、ほぼ同等である。

WTX1、WTX2 では、直交壁が圧縮(WTX1com、WTX2com)となる 場合、WX1 に比べてやや大きい値を示している。直交壁が引張 (WTX1ten、WTX2ten)となる場合、自由端脚部を補強し、圧縮コンクリ ートの損傷が少ないWTX2 がWTX1に比べて R=1/100 で低い値を示 している。

WBX1 では、R=1/700 で WX1 より大きな値を示しているがそれ以降 のサイクルでは、低い値を示し、エネルギー吸収能力は低い結果となっ た。

WX1、WSX1は、図10の変形成分に示したように曲げ変形成分は増加したがエネルギー吸収能力は、低下した。図9のX型主筋ひずみ分布で示したようにデボンドの効果によりX型主筋のひずみは、全長でほぼ均一となり、X型主筋が降伏するためには、X型主筋全長に対して、降伏に必要な伸び△lが必要となる。WSX1、WSX2、WBX1のデボンドした端部縦筋についても同様で、定着区間の長さに対して、降伏に必要な伸び△lが必要となる。このことからX型主筋が降伏しにくく、図12に示す水平力-曲げ変形関係のWX1、WSX1のように履歴の幅が小さくなったため、エネルギー吸収能力が低下したと考えられる。

5. まとめ

本論では、コアタイプ建物の耐震壁の損傷を低減し、補修性が良好な 部材の開発を目標に、デボンド X 型配筋を用いた損傷低減型耐震壁に 関する実験的研究を行い、次の知見を得た。

- 1) コア耐震壁にデボンドX型配筋を用いることによって、デボンドX型 主筋でトラスを形成し耐震壁のパネル部分のせん断力を低減し、パ ネル中央部でのせん断クラックの低減が可能となる。R=1/200 程度 の変形までは、曲げ変形が卓越して、せん断クラックは微少であり、 残留曲げクラック幅も過大ではないので、そのままで再利用可能と 考えられる。
- 2) 層毎にパネル化し、パネル内で端部縦筋もデボンドすることで、曲

図13 水平カー曲げ変形関係

げ変形成分が増大し、かつパネル境界部に変形が集中するため、 せん断クラックやパネル内の曲げクラックが生じず、地震後の修復 が容易な耐震壁とすることができる。R=1/200 程度の変形までは、 そのままで再利用可能、R=1/100 程度までは、脚部の曲げクラック の充填程度の軽微な補修で再利用可能と考えられる。

- 3) 立体耐震壁を模擬した T 字型耐震壁の場合、デボンド X 型配筋の 効果が少なく、せん断クラックの低減も困難となる。R=1/100 程度の 変形に達した場合、再利用するには大がかりな補修が必要となる。
- 4) 境界梁から曲げ戻しの影響を受けると、せん断スパン比の変化によりせん断クラックが増加する。R=1/100 程度の変形に達すると、上層からパネル上部横補強筋に伝達された応力により、パネル上部にクラックが集中する。境界梁との接合部では圧縮応力が厳しくなり、コンクリートの圧壊に伴い縦筋の座屈が生じ、補修は困難となる。
- 5) 本論文の試験体の範囲での単体の耐震壁の最大耐力は、圧縮側 X型主筋の降伏耐力に低減係数0.5を乗じたX型配筋ブレースと 平行配筋壁との和として算定することが可能である。

本研究により、デボンド X 型配筋を有する損傷低減型耐震壁の有効性 と限界を示せた。今後は、コンクリートの圧縮強度、拘束効果による耐荷 機構の詳細の研究を進め、一般性のある最大耐力評価法を検討し、設 計式として提案していく予定である。また、エネルギー吸収能力の向上を 目指し、圧縮側 X 型主筋が降伏できるような工夫や損傷がより低減できる ディテール、境界梁の接合部の損傷低減などの検討を行い、損傷の少な い立体耐震壁の可能性についての検討を進めていく予定である。

尚、本論は文献 9)~11)を再構成したものであり、一部は文献 12)にて 公表した。

謝辞

本研究は、平成17年度神奈川大学建築学科重点研究費、平成18年度、平成19 年度独立行政法人日本学術振興会科学研究費補助金(基盤研究B)により行いま した。本論文作成にあたり、神奈川大学工学部建築学科主任技術員五十嵐泉氏、 卒論生関真一朗氏、高橋佳彦氏、星野潤氏に大きな協力を得ました。本論文の査 読者からは貴重なご意見を頂きました。また、試験体、装置製作に協力を頂いた関 係者各位にこの場を借りて深く御礼申し上げます。

参考文献

- 1) 島崎和司:損傷低減を目的としたエネルギー吸収型X型配筋RC梁の開発 日本建築学会構造系論文集 No.562 pp.83*89 2002.12
- 2) 島崎和司:アンボンドX型配筋RC梁の損傷評価 日本建築学会構造系論 文集 No.604 pp.119-126 2006.6
- S. L. Wood, et. Al, "Cyclic Behavior of Reinforced Concrete Structural Walls with Diagonal Web Reinforcement," ACI Structural Journal,

2007.7-8

- Y. C. Kurama et. Al, "Seismic Response Evaluation of Unbonded Post-Tensiond Precast Walls," ACI Structural Journal, 2002.9-10
- 5) 江崎文也他:RC造耐震壁の靭性を高めるための補強法に関する実験的研究 日本建築学会構造系論文集 No.502 pp.113-118 1997.12
- 6) 勅使川原正臣他:降伏機構分離型鉄筋コンクリート造耐震壁の基本耐震性
 能 日本建築学会構造系論文集 No.593 pp.137-143 2005.7
- 7) 都祭弘幸他:降伏機構分離型鉄筋コンクリート造耐震壁のスリップ変形抑 制方法に関する研究 日本建築学会構造系論文集 No.614 pp.99-106 2007.4
- 8) 鈴木敏郎他:朝性改善を目的とした新形式鉄筋コンクリート柱の開発研究
 日本建築学会構造系論文集 No.457 pp.61-68 1994.3
- 9) 島崎和司:デボンドX型配筋を用いた損傷低減型耐震壁の実験的研究 日本建築学会大会学術講演梗概集 C-2 構造IV pp.175-176 2006.9
- 10) 島崎和司他:デボンドX型配筋を用いた損傷低減型耐震壁の実験的研究
 (その2,その3) 日本建築学会大会学術講演梗概集 C-2 構造IV
 pp.723-726 2007.9
- 平田寛治他:デボンドX型配筋を用いた損傷低減型耐震壁の実験的研究
 (その4) 日本建築学会大会学術講演梗概集 C-2 構造IV pp.359-360 2008.9
- 12) Kazushi Shimazaki, "Reinforced Concrete Shear Walls with De-bonded Diagonal Reinforcements for the Damage-less Reinforced Concrete Building," The 14th World Conference on Earthquake Engineering, 2008.10