デボンド X 型配筋を用いた損傷低減型耐震壁の実験的研究 その7 解析との比較による耐荷機構の検討

			止会負	○綿貫 裕基*
RC 構造	耐震壁	損傷低減	同	五十嵐 泉**
X型配筋	付着	スラブ支持点	同	島崎 和司***

1. はじめに

本報(その7)では、前報(その6)に示した壁全体試験体 WX6 と WX7 について、図1に示す想定した耐荷機構モ デルを解析と実験により比較、検討したので報告する。

2. 解析概要

2.1 解析モデル

解析方法は3次元有限要素法解析(以下 FEM 解析)と し、解析ソフトは汎用非線形有限要素法構造解析プログ ラム(以下 ADINA Ver.6)を使用した。解析モデルを図2 に示す。両試験体共に対称性を考慮し断面中央でY方向 に2分割し、その切断面のY方向変位を拘束した。要素 モデルは、コンクリート要素とグラウト材要素は8節点 3次元要素、鉄筋は2節点トラス要素とした。、デボンド 区間内の鉄筋は壁内で鉄筋とコンクリートの節点をそれ ぞれ独立として扱い、上スタブと下スタブ内の節点で完 全付着とした。また、壁パネル内、スラブ内の鉄筋も完 全付着と仮定した。クレビス支持のモデル化はスラブを クレビス取付板と模擬した鉄板要素ではさみ、鉄板要素 の節点を使用し点で支持するようにした。

2.2 材料特性

図2(a)にコンクリートの応力度一歪度関係を示す。コ ンクリートと壁分割部のグラウト材はプログラムに用意 さているコンクリートモデルを用いた。図2(b)に鉄筋の 応力度一歪度関係を示す。鉄筋はバイリニアモデルとし、 降伏後の2次剛性は初期剛性の1/100とした。

2.3 解析方法

加力点を図3に示す。加力は一定軸力 392kN を集中し て与え、耐震壁頂部に水平力を加力点延長上の節点増分 し、行った。実験のように正負交互に繰り返し作用させ るのではなく、片側短調載加での加力の実験を模擬した。

3. 結果

3.1 クラック状況

図4に荷重-変形関係を示す。変形角 R=1/200 までは 解析値の方が剛性が高い。これは鉄筋を完全付着とした ため、鉄筋-コンクリート間の剛性が高くなったと考え られる。R=1/100 から耐力が低下し R=1/40 で解析を終了 した。剛性や耐力低下の傾向はやや異なるが最大耐力は 概ね実験値と対応している。

図5に変形角 R=1/100 時のクラック状況を示す。解析 の方では、片側載加で解析を行っているため、モデルの

して、両試験体ともに R=1/700 で 1,2,3 層目壁脚部に曲げ クラックが発生、R=1/400 で 1,2 層目スラブに曲げクラッ クが発生した。WX6 は R=1/200、WX7 は R=1/100 で 1,2 層目スラブに捩れクラックが発生し、R=1/100 で両試験体 とも1層目壁脚部にせん断クラックが発生した。

実験と解析を比較すると、壁パネル内、スラブ内にお いて鉄筋を完全付着と仮定したため、クラックの進行は 解析のほうが早期に発生するが、壁分割部での曲げクラ ック先行、WX6 は1層目壁パネル部にクラックが集中す る等実験の傾向を捉えている。

図6に R=1/100 の主応力図(ベクトル図)、図7に R=1/100 の主応力図(コンター図)を示す。コンター図中の 濃度が濃い部分が圧縮応力の領域、薄い部分が引張応力 の領域である。両図を見てみると、両試験体とも各層の 右端部に圧縮応力が集中しており、右端部から鉛直方向 と斜め方向に圧縮応力が広がっていることがわかる。水 平力を圧縮応力により抵抗することからアーチ+トラス 機構が形成されていると考えられる。アーチ+トラス機 構が形成されることにより、図5に示したクラック図の ように解析モデル全体の分散クラックを減少し、壁脚部 にクラックを集中させることがわかる。

図8に壁ゲージの鉄筋ひずみから推定した壁面に作用 する力の大きさをベクトル図で示す。引張力は鉄筋のひ ずみ×鉄筋ヤング係数×鉄筋断面積、圧縮力は鉄筋ひず み×鉄筋ヤング係数×鉄筋断面積、圧縮力は鉄筋ひず み×鉄筋ヤング係数×鉄筋断面積+コンクリートひずみ× コンクリートヤング係数×コンクリート断面積として求 めた。ただし、コンクリートひずみは鉄筋ひずみと同値、 コンクリートの断面は鉄筋間隔に相当する断面積とした。 図9に計算結果を引張、圧縮で示す。両試験体とも左端 部の中央縦筋は引張、右端部は圧縮となった。縦筋の値 の大小より引張力より圧縮力のほうが大きく、右端付近 になるほど大きくなる傾向にある。端部縦筋も同様なこ とが言え、壁脚部に力が集中していることがわかる。以 上より、想定した耐荷機構は実験に沿っていると考えら れ、大きさの分布は図6に示したコンター図と対応して いると考えられる。

4. まとめ

試験体の解析結果は、剛性を除き全体的に実験の傾向 を捉えていた。ベクトル図、コンター図より、想定した 耐荷機構モデル通り応力が伝達していること、1層目壁 脚部右端に圧縮力が集中し、コンクリートの圧壊を模擬 できていると考えられる。今回は、鉄筋とコンクリート の節点を完全付着と仮定したことにより、剛性を高めに 評価しているので付着を模擬するためボンドリンク要素 を組み込み付着を考慮する必要がある。

*神奈川大学 工学部 建築学科 主任技術員 **神奈川大学大学院 工学研究科 建築学専攻 ***神奈川大学 工学部 建築学科 教授 博士(工学)

図7 主応力(ベクトル図)

図7 主応力(コンター図)

図8 引張力、圧縮力

【謝辞】

本研究を進めるにあたり、神奈川大学 2009 年度卒論生飯窪氏、 2010 年度卒論生菅原氏、村上氏、北風氏ならびに関係者各位に多く の協力を得たことを心より感謝いたします。

【参考文献】

- 1)島崎和司:デボンドX型配筋を用いた損傷低減型耐震壁の実験的 研究 日本建築学会学術講演梗概集 2006.9
- 2)島崎和司他:デボンドX型配筋を用いた損傷低減型耐震壁の実験 的研究(その2,その3) 日本建築学会学術講演梗概集 2007.8
- 3)平田寛治他:デボンドX型配筋を用いた損傷低減型耐震壁の実験 的研究(その4) 日本建築学会学術講演梗概集 2008.9
- 4)綿貫裕基他:デボンド X 型配筋を用いた損傷低減型耐震壁の実験 的研究(その5) 日本建築学会学術講演梗概集 2010.9

* Chief Technician, Kanagawa University

- ** Graduate Student, Kanagawa University
- *** Professor, Kanagawa University, Dr. Eng.