デボンド X 型配筋を用いた損傷低減型耐震壁の実験的研究 その 6 スラブ支持点の影響

RC 構造	耐震壁	損傷低減
X 型配筋	付着	スラブ支持点

1.はじめに

近年要求性能の高度化に伴い、RC 構造における大地震 時の損傷低減や地震後の修復性向上が求められて来てい る。これまで¹⁾⁻³⁾に耐震壁にデボンド X 配筋を用いること でせん断クラックを大幅に減少し損傷低減効果があるこ と、端部縦筋をデボンドし各層で分割することで水平ク ラックを集中させ、クラック本数を減少できることを報 告した。前報⁴⁾では、スラブによる曲げ戻しモーメントで せん断クラックの増大、壁側面の捩りモーメントに伴う 付加せん断力により壁前後面スラブにパンチングシアー 破壊が生じたことを報告した。そこでは、スラブの反曲 点位置を短期荷重時と想定したが、実際には長期荷重も 作用しているため反曲点位置が不明である。本研究では、 スラブの反曲点位置を想定した支持点の相違による挙動 の違いとパンチングシアー耐力を要素実験によって検証 したので報告する。

2.実験概要

2.1 壁全体試験体

試験体は、前報⁴と同じく、下部 2.5 層分とし、縮尺は 約 1/5 で壁断面 900mm×120mm、高さ1800mm、上下に主 筋定着用スタブを有する。試験体概要を図 1、試験体一 覧を表 1 に示す。試験体は前報と同様に端部縦筋、X型 主筋をデボンドした。壁パネルは、各層高さで分割し、 接合部にグラウト材を充填した。端部縦筋は各層毎に定 着を取るため、パネル分割部に定着版を設置した。X型 主筋は、2.5 層を通して配筋した。中央縦筋は閉鎖型とし、 パネル毎に完全に分かれている。スラブ断面は 1200mm× 100mm とした。両試験体のスラブ支持点位置を図 2 に示 しす。軸受け材にはクレビス支柱を設けた。

加力は、図3に示す加力装置を用いて試験体に一定軸 力392 k N(₀=0.1_B)を与え、耐震壁頂部に水平力を正負 交番繰り返し載荷させた。加力サイクルは、部材角 R=1/700 を1回、1/400 と1/200 を3回、1/100 を6回、 1/67 を3回、1/40 を3回とし、最後に1/33 まで一方向に 加力した。

2.2 要素試験体

試験体は、図1に示した WX6 のコア壁 フラットプレ ート接合部の一部を取り出し、壁断面 120mm×900mm、 壁高さ 200mm、スラプ断面 1200mm×100mm、長さ 1450mm とした。パラメータをせん断補強としてのスタッド本数

正会員	五十嵐	氲 泉*
同	綿貫	裕基**
同	島崎	和司***

表1 壁全体試験体一覧

	コンクリート _の (N/mm2)			共通	WX6	WX7
				42.3	31.7	
			X型筋	12-D13(デボンド)	379	379
		壁 窃σ _y (N/mm ²)	端部縦筋	12-D13(ネジ鉄筋、デボンド)	435	435
	۵۴۵۶ مر (N/mm ²)		中央縦筋	14-D13	379	379
			横筋	D10@70	390	390
	业大用D ^{Oy} (IN/IIIII)		拘束筋	D6@70	333	353
			中子筋	D6@70	333	353
		スラブ	長辺	D6@50	333	344
			短辺	D6@40	333	344

図2 スラブ支持点位置

図3 壁全体加力装置

表2 要素試験体一覧

			共通	Cs17	Cs18	Cs19
コンクリート $\sigma_B(N/mm^2)$			38.8			
鉄筋o _y (N/mm ²)		長辺	D6@50	366		
	~ ~ /	短辺	D6@40	366		
	スタッド		D6	373.6		
スタッド本数			0	22	46	

Study on Reinforced Concrete Shear Walls with De-bonded Diagonal Reinforcements Part6, Influence of the support points of slab IGARASHI Izumi, WATANUKI Hiroki SHIMAZAKI Kazushi とし、ACI 規準に準じて本数を決定した。試験体概要を 図4、試験体一覧を表2に示す。

加力は、図5に示す加力装置を用い、WX6のクレビス 支柱に作用した反力を参考に加力パターンを設定した。

3 . 実験結果

3.1 壁全体試験体

図6に水平力 水平変位関係、図7に変形角 R=1/100 時における2F壁前後面スラブ筋のひずみ分布を示す。両 試験体を比較すると履歴ループはWX6の方が若干大きい が、大きな差はない。また、両試験体とも大変形時の耐 力低下は見られなかった。スラブ筋ひずみは短辺方向に おいて両試験体とも壁付近ほど大きくなる傾向にある。 長辺方向は、短辺方向と同様に両試験体とも壁付近ほど 大きくなる傾向にあり、WX6の方が顕著であった。WX7 は2000µ以下にとどまった。

図8に変形角 R=1/100 時における 2F スラブのクラック 状況を示す。両試験体とも R=1/700 で壁 スラブ接合部 に曲げクラックが発生し、WX6 は R=1/200 で、WX7 は R=1/100 で捩れクラックが発生した。また、捩れクラック の本数は WX6 のほうが圧倒的に多く発生したが、WX7 は変形角 R=1/67 時の壁前後スラブにおいてクレビス間で 曲げクラックが発生した。

以上より、スラブ支持点位置の違いによる壁への影響 はさほど見られない。WX7 のスラブ支持点位置はスラブ の変形を拘束、捩りモーメントが減少させる。また、そ れに伴う壁前後面スラブに作用する付加せん断力が減少 したことにより、パンチングシアー破壊が発生しなかっ たと考えられる。

3.2 要素試験体

図9に水平力 水平変位関係、図10に各試験体の耐 力比較を示す。壁全体試験体 WX6 を模擬した Cs17、ス タッド本数を ACI 規準の半分とした Cs18 は大変形時に壁 前後面スラブにおいてパンチングシアー破壊が生じ、耐 力低下した。スタッドを ACI 規準に準じて配筋した Cs19 は曲げ破壊にとどまり安定した履歴ループを描いた。ACI 規準に準じたスタッドせん断補強筋を配筋することは有 効であると言える。

4.まとめ

壁全体試験体の実験より、スラブの支持点位置の違い による壁への影響に差はさほど見られないがスラブの挙 動は支持点の影響を受けることを確認した。要素試験体 の実験よりパンチングシアー破壊を防止するためには ACI 規準に準じたせん断補強筋を配筋する必要があると 言える。参考文献はまとめてその7に示す。

*神奈川大学	工学部	建築学科	主任技術	词
**神奈川大学之	大学院	工学研究科	建築学	専攻
***神奈川大学	工学部	邬 建築学科	4 教授	博士(工学)

図6 壁全体水平力 水平変位関係

図7 壁全体 2F スラブ筋ひずみ

図8 壁全体 2F スラブクラック状況

* Chief Technician, Kanagawa University

** Graduate Student, Kanagawa University

*** Professor, Kanagawa University, Dr. Eng.