デボンド異形鉄筋を用いたブレース型制振部材に関する研究 その5 RC 造梁・柱・ブレース接合部の検証実験

正会員	佐藤 宏貴*1
同	五十嵐 泉*2
同	島崎 和司 ^{*3}

RC 構造	デボンド	ブレース
制振部材		

1. はじめに

これまで、損傷制御型設計の一つである履歴型ダンパ ーを用いた制振設計のデバイスとして、デボンド化した 異形鉄筋を用いたブレース型ダンパーの開発を目的とし た実験的研究をすすめ、フレーム内に片ブレースタイプ として組み込むシステムを想定し、性能評価実験の報告¹⁾ を行った。このタイプの場合、柱・梁・ブレース接合部の 挙動がクリティカルになる可能性がある。また、Kブレー スタイプでは、その挙動が異なることが考えられる。本 論では、片ブレースタイプのRC造柱・梁・ブレース接合部 について、異なる接合ディテール、異なる条件下での挙 動の結果を報告する。

2. 実験概要

図1に加力装置、図2に試験体概要、図3にデボンド異形 鉄筋によるミニダンパーの概要図を示す。

試験体は、既報¹⁾の片ブレースタイプのフレーム実験の 柱・梁・ブレース接合部を取り出した図1、図2に示す十字 型試験体である。接合部の応力条件を明確にするため、 既報ではブレース取付部にふかしを設けたが、本試験体 ではふかしのない一般的な柱・梁接合部としている。柱・ 梁の断面は既報と同一とし、柱は柱脚ピン支持、梁はク レビス支柱を用いたローラー支持とした。柱には0.1 Bに 相当する370kNの軸力を一定に載加した。ブレースからの 軸力を再現するため、ブレースには図3に示すミニダンパ ー4本を用いた。ミニダンパーは中央のD13と両側のD19 を摩擦接合した鉄筋を、鉄筋継ぎ手用のスリムスリーブ で覆い、スリムスリーブ内にモルタルを充填する事でD13 部分の座屈を拘束するディテールとした。表1に、使用材 料の機械的性質を示す。

加力サイクルは既報¹⁾と同様とし、R=1/700を1回、 R=1/400を3回、R=1/200を3回、R=1/100を6回、R=1/67 を3回正負交互に繰り返し作用させ、R=1/40、R=1/33を 一方向にのみ加力する事とした。

表1 億	を用した材料の機	械的性質
------	----------	------

鉄筋					コンクリート	
部材	径	降伏強度	引張強度	圧縮強度	ヤング係数	
		(N/mm ²)	(N/mm ²)	(N/mm^2)	(N/mm^2)	
柱・梁主筋・ブレース中央筋	D13(SD345)	414.3	600.7			
せん断補強筋	D6(SD345)	475.6	613.4	68.8	3.33 × 10 ⁴	
ブレース端部筋	D190SD390)	477.4	668.8			

<t

図2 試験体概要

1,300

ミニダンパ

1,300

4-D13

図3 デボンド 異形鉄筋によるミニダンパー

3. 実験結果

)水平力 - 水平变位関係

図 3 に水平力 水平変位関係を示す。層間変形角が 1/33 においても安定した履歴ループを描いている。

)ひび割れ状況

写真1、写真2にR=1/100、1/33の接合部のひび割れ状 況を示す。R=1/200 でブレース芯鉄筋が降伏し、梁端部に 曲げクラックが生じた。R=1/100 で柱梁接合部にせん断ク ラックが生じ、1/67 で 2 階柱脚部がやや圧壊した。柱・ 梁・ブレース接合部にはせん断クラックが生じたが、急激 な耐力の低下は見られなかった。

図 4 に柱・梁・ブレース接合部に設置したパイゲージ により測定した水平力 せん断クラック幅関係を示す。 比較のため、既報のせん断クラック幅も合わせて示した。 接合部のせん断クラックの伸展に伴い、せん断クラック 幅が大きくなるが、R=1/100 では本実験のほうが、既報 のクラック幅より小さいが、大変形時には、本実験のほ うがせん断クラックの幅が大きくなっており、柱の軸力 の有無と接合部のふかし部分の有無が影響していると考 えられる。

)ブレース定着部鉄筋のひずみ履歴

ブレースの定着部分および露出部分の鉄筋(D19)のひず み履歴をそれぞれ図 5、図 6 に示す。接合部コンクリート 内のブレース定着部鉄筋のひずみ 1000 µ 以下であり降伏 していなかった。また、露出している部分のブレース鉄 筋(D19)についても 2000 μには至っておらず降伏していな かった。図7 にブレースの軸方向変形と露出部鉄筋(D19) のひずみ履歴から推定したブレースの軸力関係を示す。 圧縮側では曲げの影響を受けているが引張側ではダンパ -部分が降伏している事を確認できる。

4. 結論

片ブレースタイプのフレーム実験の柱・梁・ブレース接 合部は、接合部断面を柱梁断面で決まる最小のものとし ても、設計で想定する範囲において損傷は問題とならな い。スリムスリーブを用いたミニダンパーは有効である。 <参考文献> 島崎、二宮、五十嵐:デボンド異形鉄筋を用いた RC 造ブレース型制振ダ

> ξ N 水平力(

3000

図 6

*1 神奈川大学 工学部 建築学科 技術員 神奈川大学 工学部 建築学科 *2 主任技術員 *3 神奈川大学 工学部 建築学科 教授 博士(工学)

Technician, Kanagawa University. Chief Technician, Kanagawa University. Professor, Kanagawa University, Dr. Eng.