RC 部材の1質点系振動実験による損傷の評価

正会員

○島崎 和司^{*1}

(単位·mm N/mm²)

 RC 部材
 振動台実験
 損傷

 地震経歴

1. はじめに

建築構造物の地震に対する性能評価は、主として静的 な実験により行われてきている。RC 部材においては、鉄 筋が降伏するまでにコンクリートのクラックにより非線 形を示し、エネルギー吸収を行うが、地震時におけるこ の効果に対する評価は明確ではない。また、過去に受け た中小の地震により、コンクリートには損傷の累積が生 じるがこの影響についても明確ではない。

これまでに、ひずみ速度効果と減衰性能を評価するこ とを目的として、図1に示すような1軸振動モデルを制作 し、その概要を報告した¹⁾。本論では、これまでにこの振 動台を用いて行った加振実験結果を整理し、小中地震後 に大地震を受ける場合と、小中地震を経験せずに大地震 を受ける場合のRC部材の損傷の相違について検討する。

2. 実験概要

振動台は図 1(a)に示すようにリニアウェイで支持され、 振動台に取り付けたアクチュエータを変位制御すること で加振する。試験体部分はト型で柱を剛性の高い鋼製、 梁を RC とし、PC 鋼棒で緊結した。柱脚部をピン支持、 梁端部をクレビス支柱を用いたローラー支持とすること で図 1(b)に示す1 質点系の RC モデルとした。柱頭部に設 置した重量 10kN のウエイトの慣性力によって梁部に曲げ モーメントを生じさせる。試験体は、RC 梁部分のコンク リート強度、せん断補強筋量等をパラメータとした 14 体 である。代表的な RC 梁部を図 2 に示す。断面は全試験体 に共通で 100×200mm、全長 1300mm で、右端から 150mm の位置にクレビス支柱に接続するための埋め込みスリー ブ(内径 30 mm)を有する。表1に全試験体の概要を示 す。主筋は主として 2-D10、せん断補強筋は 2-D4@30~ 80 である。 荒川 mean 式によるせん断余裕度は 2~3.7 と なっており、曲げ破壊型の試験体となっている。

入力波は、BCJ L2 地震動を元に変位波形を作成し、 0.05 倍、0.1 倍、0.3 倍の振幅の波と、縮小モデルと言う ことで 0.3 倍時の時間軸を 1/2(H)と 1/4(Q)に縮小した地震 動を作成した。0.3 倍時の時間軸 1/4(0.3Q)を極稀地震と想 定している。入力保証は行っていない。それぞれの試験 体に加振した入力レベルの一覧を表 2 に示す。また、各 加振レベルの間でハンマー打撃による自由振動実験を行 い、固有周期の変化を観測した。

計測は、ウエイト頂部、重心部、振動台床上の 3 カ所

図2 梁部試験体概要

表1 試験体一覧

No.	コンク リート	断	面	主筋				せん断	i補強筋		終局せん 断耐力	Mu時せ ん断力	せん断 全必度	
	σ_{B}	b	D	配筋	p _t (%)	σy	配筋	ピッチ	p _w (%)	σy	Qu (kN)	Q _M u (kN)	示怕皮	
1	53		200	2-D10	0.79	387	87 87 87 87 87 87 87 87 87 87 89 89 89	30	0.94	328	41.5	11.6	3.6	
2	53				0.79	387		50	0.56	328	36.2	11.6	3.1	
3	53				0.79	387		80	0.35	328	32.4	11.6	2.8	
4	53			3-D10	1.18 387	387		80	0.35	328	34.1	17.4	2.0	
5	80			2-D10	0.79	387		50	0.56	328	43.0	11.6	3.7	
6	42				0.79	387		50	0.56	328	33.4	11.6	2.9	
7	40	100			0.79	387		30	0.94	328	38.2	11.6	3.3	
8	40	100			0.79	387		30	0.94	328	38.2	11.6	3.3	
9	40				0.79	387		80	0.35	328	29.1	11.6	2.5	
10	40				0.79	387		80	0.35	328	29.1	11.6	2.5	
11	41				0.79	389		30	0.94	361	39.6	12.8	3.1	
12	41				0.79	389		80	0.35	361	30.0	12.8	2.3	
13	41				0.79	389		30	0.94	361	39.6	12.8	3.1	
14	41				0.79	389		80	0.35	361	30.0	12.8	2.3	
12 13 14	41 41 41				0.79 0.79 0.79	389 389 389		80 30 80	0.35 0.94 0.35	361 361 361	30.0 39.6 30.0	1 1 1	2.8 2.8 2.8	

表2 加振サイクル

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
加振レベル	0.05	0.05	0.05	0.05	0.05	0.05	0.05		0.05					
	0.1	0.1	0.1	0.1	0.1	0.1	0.1		0.1	\geq				
	0.3	0.3	0.3	0.3	0.3	0.3	0.3		0.3	\searrow	0.05Q	0.05Q	\langle	
	0.3H	0.3H	0.3H	0.3H	0.3H	0.3H	0.3H		0.3H		0.1Q	0.1Q		
	0.3Q	0.3Q	0.3Q	0.3Q	0.3Q	0.3Q	0.3Q	0.3Q	0.3Q	0.3Q	0.3Q	0.3Q	0.3Q	0.3Q
				\geq			0.3H	0.3H	0.3H	0.3H	0.1Q	0.1Q	0.1Q	0.1Q
				\geq					\geq	\searrow	0.1Q	0.1Q	0.1Q	0.1Q
				\geq							0.3Q	0.3Q	0.3Q	0.3Q
H:時間軸1/2.										Q:B	計間軸	1/4		

の加速度、ウエイト重心部の変位、図 2 に示した変位計 測範囲の曲げ変形算定用の区間変形とせん断変形計測用 のπ型変位計によるヒンジ部の対角変位とし、ひずみは 主筋とせん断補強筋のひずみを計測した。

3. 実験結果

実験結果のうち、No.11-13 の 0.3Q 加振時の M-θ関係、

写真1 極稀地震相当加振後の損傷状況

Q-γ関係、Q-せん断補強筋ひずみ関係を図 3 に、損傷状 況を写真1に示す。No.11 と No.12 はせん断余裕度の差、 No.11 と No.13 は大地震時の前の中小地震の有無が主な違 いである。中小地震を経験した No.11 は、中小地震時の曲 げクラックが増大し、平行なクラックが目立つ。

回転角は梁の上下に取り付けた区間変形から求めた各 区間の変形角の和として算定した。曲げ回転角はきれい な紡錘形で、せん断変形はスリップ形状となっている。 正側の変形が大きいが、これは損傷が大きくなると梁自 重の影響により一方向に変形がドリフトしていくことに よるものと考えられる。No.11 と 12 の比較ではせん断余 裕度の大きい No.11 の方が曲げ変形、せん断変形ともに大 きい。No.11 と 13 の比較では中小地震を経験している No.11 の方が曲げ変形、せん断変形ともに大きい。

図4に全試験体の極稀地震加振時(0.3Q)とその前後の加 振時の最大応答回転角とNo.7-14の最大応答せん断ひずみ を示す。No.8の0.3Q時は、区間変位計が脱落したため最 大回転角が計測できていない。No.14のせん断ひずみが少 ないのは、損傷が計測区間外に生じたためである。全試 験体の応答を概観すると、中小地震の経験の有無による 相違はあまり見られない。また、せん断余裕度はどの試 験体もかなりの余裕があるためその影響は明瞭ではない。

大地震後の余震を想定した 0.3H/0.1Q 加振では、曲げ回 転角は地震動の大きさに応じて減少しているが、せん断 ひずみは大地震時と同じ程度となっている。これは、図 3 に示したように履歴がスリップ形状となっているため、 剛性がほとんど無いためである。

図 5 に、各加振後の自由振動実験による固有周期の変 化を示した。中小地震を経験したものの方が大地震時で の固有周期の伸びが大きい傾向にある。

4. まとめ

1 軸振動試験装置を用いた 1 質点系の RC 部材の中小地 震の経験の有無による損傷の相違について検討を行った が、本実験の範囲内では明瞭な差は見られなかった。今 回は応答スペクトルが平滑な模擬地震動 1 種類の結果で あり、せん断余裕度の少ないものや、地震動の性状によ る相違については今後の課題としたい。

<参考文献>

- 1)島崎 和司:RC部材の1 質点系振動実験によるひずみ速度効果による減衰の評価-試験装置の試作-、AIJ 大会学術講演梗概集、C-2、p.759-760、 2010年9月
- *1 神奈川大学 工学部 建築学科 教授 博士 (工学)

Professor, Kanagawa University, Dr. Eng.